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Abstract 

Individual-based movement models can help predict potential changes to animal movement 

behavior, habitat selection, and functional connectivity as human-caused habitat alteration 

increases. Functional connectivity plays a major role in the population viability of wide-ranging 

species, yet it is difficult to measure and predict. We used integrated step selection functions 

(iSSF) to model movement and habitat selection for 109 GPS-collared grizzly bears across 

85,000 km2 of southeast British Columbia and southwestern Alberta, where they face increasing 

habitat alteration from roads, human settlements, and mining. We then simulated individual 

grizzly bear movements from fitted iSSFs under three human disturbance scenarios to predict 

changes in population-level space use and functional connectivity in response to these 

disturbances. Bears generally avoided crossing highways, towns, and mines, but were attracted to 

areas alongside highways in regions with relatively low forage availability. Additional footprints 

of proposed mines and expanded human settlements in a future scenario would further decrease 

functional connectivity for grizzly bears on top of prior connectivity losses from existing human 

disturbance. Our results provide insights into grizzly bear movement and connectivity in an area 

of high conservation importance, and our predictive maps can be used to directly inform 

transboundary management actions and conservation planning. 

Introduction 

Wildlife movement is a fundamental ecological process that facilitates the acquisition of food, 

search for mates, and security from threats (Turchin 1998). Habitat change through loss, 

fragmentation and degradation can impede animal movement, thereby reducing access to 

resources and increasing their vulnerability to mortality while moving within and between 

habitat patches (Lindenmayer and Fischer 2013). Reductions in movements in response to 

https://www.zotero.org/google-docs/?86aosD
https://www.zotero.org/google-docs/?EwgHR2


human influence have been documented across many species of mammals around the world, 

with far-reaching effects on multiple ecosystem processes (Tucker et al. 2018). Further, 

declining functional connectivity via reduced movement success among and between habitat 

patches can decrease the spatial distribution, abundance, and population persistence of animals 

(Bowne and Bowers 2004, Fahrig 2007).  

The number of analytical approaches for assessing movement, habitat selection and 

connectivity has grown rapidly along with our ability to track animals at finer spatial and 

temporal resolutions and for longer durations (Northrup et al. 2022, Unnithan Kumar and 

Cushman 2022). Among these approaches, integrated step-selection analyses are attractive 

because they relax the assumption that movement and habitat selection are independent, 

simultaneously estimate parameters for both processes, and model interactions between the two 

(Avgar et al. 2016). Practitioners can simulate individual animal paths parameterized by these 

models to estimate population-level utilization distributions, which are more accurate than maps 

from traditional resource selection models that assume constant resource availability across 

space and time (Signer et al. 2017, 2024).  

Individual-based simulations from fitted integrated step-selection functions (iSSFs) also 

provide a means to estimate Merriam connectivity, a type of functional connectivity defined as 

per-individual movement success between and within habitat patches (Fahrig et al. 2021). 

Merriam connectivity explicitly incorporates species-specific movement capability and structural 

landscape effects on connectivity. Quantifying connectivity directly from simulated trajectories 

obviates the need to separately predict landscape resistance (e.g., via transformed spatial 

predictions from a habitat selection model) for use in connectivity analyses such as cost-distance 

or circuit theory (Zeller et al. 2012), which require predefined path destinations, and assume 

https://www.zotero.org/google-docs/?EvrftK
https://www.zotero.org/google-docs/?yJuSMA
https://www.zotero.org/google-docs/?yJuSMA
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animals have perfect knowledge of landscape resistance and exhibit consistent movement 

behavior.  

Understanding how increasing human disturbance affects wildlife movement is essential 

for developing effective wildlife conservation and management strategies (Doherty and Driscoll 

2018). Here, we focus on the movement, habitat selection, and connectivity of grizzly bears in 

the southern Canadian Rocky Mountains (Figure 1), where a growing footprint of roads, mines, 

human settlement, and other infrastructure has negatively affected their movements, behavior, 

and survival (McLellan and Shackleton 1988, Nielsen et al. 2004, Ciarniello et al. 2007, 

Northrup et al. 2012b). As a result, small subpopulations in this region have become increasingly 

isolated with minimal demographic interchange, and bears living in close proximity to humans 

rely on connectivity to nearby wilderness areas to offset human-caused mortality and to sustain 

viable populations (Proctor et al. 2012, Lamb et al. 2020). Understanding factors affecting 

grizzly bear habitat selection and mapping predicted space use in this region is key to preventing 

the near complete loss of connectivity between populations that has occurred farther south in 

Montana, Idaho and Wyoming (Sells et al. 2023).  

We used a multi-step approach (Figure 2) to predict grizzly bear movements, habitat 

selection, and functional connectivity under past conditions (i.e., without human disturbance), 

current conditions, and a future scenario with increased human disturbance. First, we used iSSFs 

to estimate the degree to which a suite of habitat attributes affected grizzly bear movements, with 

a particular focus on how human infrastructure and broad-scale variation in habitat availability 

influenced movement and habitat selection. We then simulated individual movements from fitted 

iSSFs to predict population-level utilization distributions (UD) at a spatial extent large enough to 

help guide conservation planning at regional, national and international levels (Hilty et al. 2020, 

https://www.zotero.org/google-docs/?yAznpF
https://www.zotero.org/google-docs/?yAznpF
https://www.zotero.org/google-docs/?kbz1Hd
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Pither et al. 2023). Finally, we predicted changes to grizzly bear functional connectivity by 

calculating movement success of simulated animals within and between habitat patches in a 

subset of our study area with high amounts of existing and proposed human disturbance, high 

bear densities, and frequent human-bear conflicts. 

 

Methods 

Study area 

Our study area consisted of 85,000 km2 of southeastern British Columbia (BC) and southwestern 

Alberta (AB), including a large portion of the southern Canadian Rocky Mountains (Figure 1). 

At a broad spatial scale, this region provides important connectivity along the continental divide 

between highly fragmented animal populations in the south and larger ones to the north and west 

(Apps and Wildlife Conservation Society Canada 2007). The Rocky Mountains form a narrow 

(50–100 km) corridor between the developed prairies to the east and the settled valley of the 

Rocky Mountain Trench to the west, and encompass large swaths of protected areas, including 

several national parks, provincial parks, and provincial wildland areas. Several major highways 

cross the region, primarily along valley bottoms but also across several high mountain passes. 

Human settlement is largely confined to valley bottoms, low-elevation foothills, and prairies. 

Recent increases in tourism and associated traffic, ongoing development of coal mines, and 

human population growth have increased habitat alteration in the region. In AB, grizzly bear 

hunting was banned in 2006, and the species is listed as Threatened under the Wildlife Act 

(Government of Alberta 2022). Hunting of grizzly bears was legal outside of national parks in 

BC until it was banned in late 2017.  

 

https://www.zotero.org/google-docs/?Ov5h7m
https://www.zotero.org/google-docs/?gu1V4S
https://www.zotero.org/google-docs/?mRNB3f


Telemetry data 

We used GPS collar data from grizzly bears captured throughout the southern Canadian Rocky 

Mountains. Bears were captured using multiple methods, including darting from a helicopter, leg 

restraints, and culvert traps. Full details on bear capture methods and animal care protocols can 

be found in (Northrup et al. 2012a, McLellan 2015, Lamb et al. 2020, Whittington et al. 2022). 

Our initial dataset included 305,619 GPS locations from 159 GPS-collared grizzly bears whose 

collars collected data between 2000 and 2020. We resampled GPS location data to a relocation 

interval of ~6 hours to maintain a consistent sampling rate across individuals for our iSSFs and 

to maximize sample sizes throughout the study extent and across different collaring efforts. This 

relocation interval limited the spatial domain available to an animal at a given time step to be 

within a distance reachable within 6 hours. We captured seasonal differences in movement and 

habitat selection behavior by assigning location data into one of three time periods, which were 

modified slightly from seasons used in McLellan and Hovey (1995) that were based on changes 

in grizzly bear diet. Our seasons were: spring (den emergence–July 15), summer (July 16–Sept 

15), and fall (Sept 15–den entrance). We fit separate iSSFs for each season (Avgar et al. 2016).  

https://www.zotero.org/google-docs/?enyKD3
https://www.zotero.org/google-docs/?65ywyE
https://www.zotero.org/google-docs/?snx9um


 

Figure 1. Focal area for grizzly bear movement and connectivity analyses in the southern 
Canadian Rocky Mountains showing locations of grizzly bear telemetry data, collected from 
2000–2020, used in the integrated step-selection functions. Colors of telemetry locations indicate 
different regions within the study area that were used in spatial cross validation of the models. 
Assignment of individuals to regions was based on home range centroid. 
 
Habitat covariates 

A major focus of our analyses was to understand grizzly bear behavioral responses to 

different types of human disturbance, including mines, roads, and towns. We represented these 

disturbances using one or more of three different variable types: (1) footprint, a binary variable 



indicating whether the location intersected the disturbance feature itself, (2) distance-to, a 

continuous variable with transformed distances to a disturbance feature (see Appendix 1 for 

details on distance transformations), or (3) semi-permeable movement barrier, a binary variable 

indicating whether the straight lines connecting consecutive locations intersected a disturbance 

feature. We acknowledge that the straight-line ‘steps’ are modeling heuristics, that the bears did 

not in fact travel along these straight lines and, in some scenarios, they might easily move around 

the ‘barrier’. Nevertheless, our approach provides a parsimonious way to estimate semi-

permeable barrier effects in iSSF.  We ran separate models using either footprints or semi-

permeable barriers for mines and towns. We used separate distance-to variables for highways 

and non-highway roads, which we expected would have different effects on bears due to 

differences in vehicle speed and traffic volumes (Gibeau et al. 2002, Waller and Servheen 2005, 

Northrup et al. 2012a). We also represented highways as semi-permeable movement barriers. 

Finally, we included semi-permeable barriers for alpine areas that were either glaciated or 

predominantly rock, and for large (> 2.5 km2) lakes and reservoirs. See Appendix 1 for 

additional details on creation of human footprint and semi-permeable barrier variables. 

We also sought to quantify selection behavior in response to forage, terrain ruggedness 

index (TRI), and canopy cover. We predicted that grizzly bears would select areas with high 

vegetation greenness, measured using the enhanced vegetation index (EVI) and delta EVI 

(growing season EVI – winter EVI), which would strongly correlate with high quality forage 

such as deciduous shrubs and forbs. We compared log-likelihoods of full models using only one 

of these variables to determine which to use in top models.  

We predicted that bears would avoid the most rugged terrain and generally select low to 

intermediate canopy cover. To help distinguish between deciduous shrubs and forbs versus 

https://www.zotero.org/google-docs/?AnepSe
https://www.zotero.org/google-docs/?AnepSe


deciduous trees, we interacted greenness with canopy cover. In spring and summer models, we 

also included an interaction between greenness and elevation to help capture intermediate-to-

high-elevation areas of high greenness such as avalanche paths and alpine meadows. We 

predicted bears would more strongly select these areas relative to low-elevation agricultural areas 

because they often contain an abundance of high-quality bear forage (Serrouya et al. 2011). We 

assumed the first spring location for each bear-year was near its den, and we included a ‘distance 

to den’ variable in all three seasonal models. We predicted that most bears in our dataset 

exhibited range-resident behavior and that the coefficient for distance to den would be negative. 

We resampled all raster data to 180-m resolution for iSSFs and subsequent simulations to 

balance spatial resolution with computation time. See Table S1 for additional details on habitat 

covariates used in iSSFs. 

 

Integrated step selection functions 

We fit point-based iSSFs in a generalized linear mixed modeling (GLMM) framework 

using the R package ‘glmmTMB’, version 1.0.2.1 (Brooks et al. 2017, Muff et al. 2019). iSSFs 

discretize animal movement paths into individual steps and restrict the availability domain for 

each step based on the animal’s current location and their typical movement behaviors. For each 

season, we fit a gamma distribution to used step lengths and a von Mises distribution to turning 

angles between consecutive used steps at the population level (step lengths and turn angles 

pooled across all animals). We generated 20 available locations per used location by making 

random draws from these distributions using the R package ‘amt’, version 0.1.2 (Signer et al. 

2019). Each set of one used location and 20 available locations represented a stratum.  

https://www.zotero.org/google-docs/?dBFfx6
https://www.zotero.org/google-docs/?Ts9ANW
https://www.zotero.org/google-docs/?lAJHLI
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We extracted habitat covariate values at the end of each step to characterize habitat 

selection and at the start of each step for movement-habitat interactions (Fieberg et al. 2021). We 

estimated stratum-specific intercepts as random effects with a fixed large variance in a 

conditional Poisson regression, following Muff et al. (2019). We included a random slope at the 

individual level for every covariate, except on generalized functional response interaction terms 

(see below) and terms where their inclusion prevented model convergence. We included 

interactions between movement parameters (log step length) and habitat covariates (canopy 

cover, EVI, TRI) at the start of steps to account for the degree to which animals adjust their 

speed of travel and directional persistence based on different habitat characteristics. We 

interacted cosine turn angle with log step length because directional persistence and step length 

are often positively correlated (Hodel and Fieberg 2022).  

  

Generalized functional responses in iSSFs 

Exploratory plots of selection ratios calculated within bins of several continuous 

variables (e.g., distances to roads and highways) showed pronounced variation in selection 

behavior across different portions of the study area (Figures S1 and S2). We attempted to 

account for this broad-scale variation in grizzly bear behavior in our models by using generalized 

functional responses (GFR), which are interactions between habitat variables at the ends of steps 

with broader-scale habitat availability (Matthiopoulos et al. 2011). Using GFRs can improve a 

model’s ability to accurately predict responses across heterogenous or novel environments while 

still capturing local extremes in resource availability (Matthiopoulos et al. 2011, Paton and 

Matthiopoulos 2016). We estimated the broad-scale availability of greenness, terrain ruggedness 

and canopy cover by calculating the average pixel value within a circular moving window of 315 

https://www.zotero.org/google-docs/?nW4ICq
https://www.zotero.org/google-docs/?JkyTTB
https://www.zotero.org/google-docs/?g7Fi9a
https://www.zotero.org/google-docs/?0Yn4EZ
https://www.zotero.org/google-docs/?O8oqt7
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km, which was large enough that it ensured the Pearson’s correlation between a covariate and its 

broad-scale average was < 0.65 (see Appendix 1 for details), and which also roughly corresponds 

to the average seasonal home range size of a grizzly bear from past studies in the area (Graham 

and Stenhouse 2014). We did not include random slopes on the generalized functional response 

interaction terms themselves (e.g., canopy cover:broad scale greenness) because these terms 

account for broad-scale, population-level variation in responses across the entire study area, and 

there was relatively little variation in home-range level greenness encountered by an individual 

bear. 

 

Model selection 

For each season, we started with a full model structure that included quadratic terms for canopy 

cover, TRI, and elevation, predicting that bears would select for intermediate values of each of 

these variables. We also included greenness, all types of human disturbance, and semi-permeable 

barrier variables for rock/ice and water bodies. However, we prioritized accurate spatial 

predictions over consistency in model structure across seasons, and we removed or retained 

model terms depending on model performance (i.e., individual Spearman’s rank correlations) in 

the spatial cross validation processes described below (see below).  

 

Mapping utilization distributions using simulations from fitted iSSFs 

We simulated movement paths from fitted iSSFs to predict seasonal population-level UDs across 

the entire study area (Signer et al. 2017). We lacked a spatially unbiased sample of den locations 

across our study extent to use as start locations for spring iSSF simulations. Instead, we ran a 

second-order resource selection function (RSF) using the same GPS location dataset as for our 

https://www.zotero.org/google-docs/?Q01Pud
https://www.zotero.org/google-docs/?Q01Pud


iSSFs to predict where bears placed home ranges within the broader region. We randomly 

sampled 100,000 locations from the top 30% of mapped predicted relative probabilities of use 

from the second-order RSF and used these as starting locations for the spring UD simulation. 

This process reflected bears’ primary distribution within the mountains, foothills and mountain 

valleys, and their broad-scale avoidance of eastern prairies. Additional details on the second-

order RSF can be found in Appendix 1. 

We used the ‘rvnorm’ function in Program R to simulate a separate set of habitat 

coefficients for each simulated bear using the full variance-covariance matrices of our top 

models (Kerman and Gelman 2007). This accounted for individual variability in habitat selection 

responses and propagated model uncertainty to our simulated movement paths. However, we 

simulated coefficients for movement and movement-habitat interactions using the fixed-effect 

variance-covariance matrix only, as including additional uncertainty from random slopes 

sometimes resulted in a negative gamma distribution scale parameter when generating proposed 

step lengths, which is nonsensical (Valle et al. 2023). At each simulated bear’s starting point in 

the spring simulation, we randomly generated an initial bearing and drew a random step length 

from the gamma distribution fitted to observed step lengths pooled across all animals for that 

season. We used the iSSF model coefficients from movement and movement-habitat interaction 

terms to update the distribution of available step lengths and turn angles to estimate the 

selection-free movement kernel at each subsequent step, as in Avgar et al. (2016). We then 

extracted habitat attributes at the endpoints of the 100 candidate steps and multiplied their values 

by the corresponding habitat coefficients to calculate relative probability of use for each location, 

conditional on the 100 candidate locations. We weighted each candidate location by its predicted 

relative probability of use, probabilistically selected one location, and continued to the next step 

https://www.zotero.org/google-docs/?x9MUHE
https://www.zotero.org/google-docs/?c1M9ri
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in the path for that animal. We repeated this process for all steps in the path. We terminated a 

path if > 60% of the 100 candidate locations for a step fell outside the study area and assigned 

steps that landed in either a large (> 2.5 km2) waterbody or among cliffs (TRI > 30) as NA.  

We simulated 1,000,000 paths with 4 locations per day within our study area for 68 days 

in the spring, 61 days in the summer, and 47 days in the fall (median season durations across all 

bear-years). We used the last location from each complete path from the spring simulation as 

start locations for summer and used the summer end locations as start locations for fall. We 

created a seasonal UD by summing the number of locations that fell in each 180-m raster pixel. 

We then created annual UDs by summing the three seasonal rasters and dividing each pixel’s 

value by the total number of steps across all seasons. Additional details on individual-based 

simulations are in Appendix 1. 

 

Validation of iSSFs 

We evaluated the seasonal iSSFs using two different spatial cross validation procedures with 

individual blocking (Roberts et al. 2017). First, we calculated a centroid from each animal’s full 

set of locations across all seasons, and then classified animals into one of six validation regions, 

which contained between 9% and 19% of the total locations within a season: Banff National Park 

West (BNPW), Banff National Park East (BNPE) Kananaskis (KAN), Elk Valley North (EVN), 

Elk Valley South and Southeast (SE; Figures 1 and S3). For each of six validation folds, we 

withheld all data from animals in one test region (test data) and fit our top seasonal models to the 

remaining six regions (training data). We then simulated a population-level UD from each 

seasonal model fitted to the training data using the same procedure as above, categorized the 

raster pixel values into 10 roughly equal-area bins, and overlaid the GPS locations from the 

https://www.zotero.org/google-docs/?MqBgo3


withheld region. For each withheld individual, we calculated the Spearman’s rank correlation 

between the area-adjusted proportion of used locations in a bin and the bin ranking (1–10; Boyce 

et al. 2002). We repeated this process for all six validation regions, and reported validation 

results broken down by season and region.  

We also created used habitat calibration (UHC) plots as in Fieberg et al. (2018). These 

UHC plots provided a graphical (qualitative) assessment of how well our models predicted the 

observed frequency distribution of environmental space use. We used the same region-based 

training and test datasets as above for UHC plots, but omitted mines, town crossings and water 

crossings from top seasonal models because these features were not present in all six validation 

regions. We characterized the used habitat distribution under the models fit to training data by 

drawing 1000 samples from each habitat covariate. 

Finally, we assessed the predictive capacity of our UDs beyond the spatial extent of our 

model input data by overlaying GPS location data from 17 grizzly bears in BC’s Flathead Valley 

over our binned seasonal UDs and calculating Spearman’s rank correlations of area-adjusted 

proportions in each bin. 

 

https://www.zotero.org/google-docs/?9P57Ve
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 1 

Figure 2. Steps for predicting annual space use and quantifying functional connectivity using individual-based simulations 2 
parameterized from fitted integrated step selection functions for 109 grizzly bears in the southern Canadian Rocky Mountains. 3 
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 10 



Assessing past and future land use scenarios 11 

We predicted how habitat selection and space use have changed from a past “disturbance-free” 12 

land-use scenario and may change under a future scenario. For the past scenario, we eliminated 13 

distance to road and highway variables, mine footprints, and semi-permeable barriers for towns 14 

and highways from our simulations. We filled in greenness and canopy cover values within the 15 

footprints of these removed features using the average values from the surrounding raster pixels 16 

(see Appendix 1 for more details). For future conditions, we used a disturbance scenario where 17 

all currently proposed coal mines were built and towns (>100 buildings/km2) extended their 18 

footprint outward by 500 meters. This scenario is plausible in the next 25–50 years given the 19 

expansion of mining and housing developments in the study area over the last century, but it 20 

does not include potential restoration of disturbed areas. We applied the average canopy cover 21 

and greenness values within existing mine footprints and towns, respectively, to the added 22 

footprint of these features.  23 

 24 

Predicting changes in functional connectivity 25 

We quantified movement success of simulated paths between locations in and around the Elk 26 

Valley in southeast BC under past conditions, current conditions and under a future scenario, and 27 

calculated the percent change in movement success across individuals between the scenarios. 28 

Under the future scenario, this area encompassed 228 km2 of proposed coal mines and 50 km2 of 29 

expanded human settlement. We categorized past, current, and future annual UDs into 10 equal-30 

area bins, and generated 20 nodes from within patches of high predicted use (i.e., bins 8, 9 and 31 

10) that occurred in all three UDs. We required all high-use patches to be > 2 km2 in area and > 32 

10 km apart. For each scenario, we counted the number of simulated paths that traveled between 33 



all possible pairs of nodes. We considered a simulated path to have visited a node if any of its 34 

locations fell within the intersection of a 1-km2 buffer around the node and its associated high-35 

use patch. Most (15 of 20) nodes fell in separate habitat patches, although a few occurred in the 36 

same larger patch, so our predictions included both between- and within-patch movement 37 

success, both of which are important for functional connectivity (Cavanaugh et al. 2014). 38 

 39 

Results 40 

iSSFs 41 

After resampling tracks to one location every ~6 hours and removing bear-seasons with <21 days 42 

of locations, our final iSSF dataset included 69,414 GPS locations from 109 bears (Table 1). We 43 

did not include elevation in the fall model because Spearman’s rank correlations declined across 44 

most individuals in the spatial cross validation when it was included. We also did not include 45 

distance to roads or highways in the fall model, because there was no clear pattern in selection 46 

ratios across a range of distances from these features (Figures S1 and S2). Log likelihood 47 

supported using a footprint variable over a crossing variable for mines and a crossing variable 48 

over a footprint variable for towns in all top models. Mine footprints in summer, lake crossings 49 

in all seasons, and town crossings in spring and summer were too rare on the landscape to fit 50 

random slopes. We only retained GFR terms with broad-scale greenness, as they explained far 51 

more variation than interactions with broad-scale canopy cover and TRI. See Table S2 for the 52 

model structure of final seasonal iSSFs.  53 

 54 

Table 1. Summary of GPS locations used in the integrated step-selection functions for 109 55 
grizzly bears from 2000–2020 in the southern Canadian Rocky Mountains. 56 

https://www.zotero.org/google-docs/?1fkDcV


Season 
 # of locations  # of bears  Mean ± SD locations 

per bear  Mean ± SD days 
with location 

 Female Male  Female Male  Female Male  Female Male 

Spring  17,177 9,137  52 43  330 ± 238 212 ± 153  93 ± 
63 62 ± 42 

Summer  15,066 6,474  48 31  314 ± 209 209 ± 134  89 ± 
55 59 ± 34 

Fall  11,374 5,552  50 27  227 ± 155 206 ± 96  66 ± 
43 57 ± 27 

 57 

Cover, forage, and topography—We assessed behavioral responses to habitat conditions by 58 

plotting relative selection strength (Avgar et al. 2017) predictions across the full range of values 59 

for a covariate in the input dataset relative to its average value in that season, holding all other 60 

covariates constant at their average values. Grizzly bears selected areas with high greenness 61 

(βspring = 0.71 ± 0.05 [SE], βsummer = 0.61 ± 0.05, βfall = 0.38 ± 0.04) and low-to-intermediate 62 

terrain ruggedness in all seasons, although relative selection for greenness was higher in spring 63 

and summer than in fall (Figures S4 and S5). Selection for high greenness increased at higher 64 

elevations in spring and summer (greenness:elevation: βspring = 0.22 ± 0.03, βsummer = 0.28 ± 0.04) 65 

and increased in open areas in the summer and fall (greenness:canopy cover: βsummer = –0.06 ± 66 

0.03, βfall = –0.16 ± 0.03; Figure S5). Bears selected low to intermediate canopy cover in all 67 

seasons (Figure S4).  68 

 69 

Movement—Nearly 88% of all used locations in our final dataset were < 20 km from the first 70 

location in that bear-year, suggesting strong range resident behavior, although we did observe 71 

obvious exploratory forays (defined as > 40 km displacement) in 9 of 307 (< 3%) of bear-years. 72 

Accordingly, the distance to den variable was strongly negative for all three seasonal models 73 

(Figure S5). Faster movements were more directional, as indicated by positive coefficients for 74 

https://www.zotero.org/google-docs/?lh7LxB


the interaction between cosine turn angle and log step length. Grizzly bears moved slower in 75 

areas with more rugged terrain and higher canopy cover during all seasons (Figures S5 and S6). 76 

During spring and summer, bears moved faster in areas with higher greenness (Figure S5).  77 

 78 

Semi-permeable barriers and human footprint—Grizzly bears avoided crossing towns (βspring = –79 

0.59 ± 0.15, βsummer = –0.70 ± 0.20, βfall = –0.09 ± 0.24), highways (βspring = –1.08 ± 0.11, βsummer 80 

= –0.80 ± 0.13, βfall = –0.69 ± 0.11), and high elevation rocky or glaciated areas (βspring = –0.89 ± 81 

0.15, βsummer = –1.07 ± 0.11, βfall = –1.24 ± 0.14) during all three seasons (Figure 3), although 82 

avoidance of crossing towns in fall was not statistically significant. The main effects of distance 83 

to highways and to roads were not statistically significant on their own in either summer or fall 84 

models. However, the degree of selection or avoidance of these features in both spring and 85 

summer depended on broad-scale variation in greenness (see Generalized Functional Responses 86 

below; Figure 4). Bears avoided mine footprints in all seasons (βspring = –0.49 ± 0.35, βsummer = –87 

1.56 ± 0.43, βfall = –0.49 ± 0.44), although this avoidance was only statistically significant in the 88 

summer. The lack of statistical significance in spring and fall was likely because mines were 89 

relatively rare on the landscape and because two bears (one in each season) were habituated to 90 

mining activity (Figure 3).  91 



 92 

Figure 3. Predicted relative selection strength of grizzly bears, shown by season, for potential 93 
barriers and human footprint variables. Predictions are from integrated step-selection functions 94 
fit to GPS collar data from 109 bears from 2000–2020 in the southern Canadian Rocky 95 
Mountains. Transparent points show individual-level coefficients (random slopes), while points 96 
with black outlines and error bars intervals depict fixed-effects coefficients and associated 95% 97 
confidence intervals based on fixed effects only. Selection strength for a covariate is relative to 98 
its average value (from the model input data) during that season. All other covariates in the 99 
model were held constant at their average values. Points denoted with + indicate variables 100 
without random slopes.  101 
 102 



Generalized functional responses—Responses to canopy cover, greenness, roads, highways, and 103 

rock/ice barriers varied as a function of the broad-scale greenness in an area (Figure 4). In spring 104 

and summer, lower broad-scale greenness consistently increased the relative selection for areas 105 

near roads and highways (d_hwy:greenness_broad: βspring = 0.09 ± 0.02, βsummer = 0.06 ± 0.02; 106 

d_road:greenness_broad:  βspring = 0.11 ± 0.01, βsummer = 0.13 ± 0.02). Lower broad-scale 107 

greenness was also associated with selection of lower canopy cover in all seasons 108 

(canopy_cover:greenness_broad: βsummer = 0.14 ± 0.03,  βfall =  0.32 ± 0.04) and higher greenness 109 

in fall (greenness:greenness_broad: βfall = –0.13 ± 0.03; Figure 4). In spring and summer, bears 110 

were more likely to move across highways and rock-ice features in areas with lower broad-scale 111 

greenness, although the increased avoidance of crossing highways in these areas was not 112 

statistically significant (Figure S5). 113 



 114 

Figure 4. Predicted relative selection strength of grizzly bears, shown by season, across a range 115 
of habitat covariates as a function of broad-scale greenness (enhanced vegetation index). 116 
Predictions are from integrated step-selection functions fit to GPS collar data from 109 bears 117 
from 2000–2020 in the southern Canadian Rocky Mountains. Variable ranges on the x-axis 118 
include the middle 95% of values available to bears in iSSFs (excluding values below and above 119 
the 2.5% and 97.5% quantiles, respectively). Selection strength for a covariate is relative to its 120 
average value (from the model input data) during that season, which is 1. Shaded regions 121 
indicate 95% confidence intervals based on fixed effects only. All other covariates in the model 122 
were held constant at their average values. 123 



 124 

Figure 5. Predicted annual utilization distribution under current conditions for the entire study extent (A), estimated as the sum of 125 
three seasonal utilization distributions (spring, summer, and fall). Predicted annual utilization distributions under past conditions (no 126 
human disturbance), current conditions, and a future scenario of additional human footprint (B), and the relative percent change in 127 
predicted probabilities of use between past and current conditions, and between current conditions and a future scenario (C), in a 128 
subset of the study area outlined in red in (A). Utilization distributions were created using individual-based simulations from 129 
integrated step-selection functions fit to GPS collar data from 109 grizzly bears from 2000–2020 in the southern Canadian Rocky 130 
Mountains. We calculated the 99% quantile of mapped predictions in the utilization distributions and set all higher pixel values to this 131 
value to ease visual interpretation. Similarly, we calculated the 1% and 99% quantiles of relative percent change and set all pixel 132 
values lower, and higher, respectively, to these values. 133 



 134 

Simulated utilization distributions from iSSFs 135 

The annual UD under current conditions showed areas of high predicted use mostly occurred in 136 

mountain valleys in the northern portion of the study area, which included large expanses of 137 

high-elevation rock and ice (Figure 5). Predicted use was more evenly distributed across 138 

elevations in southern areas. We calculated the areas within 50% and 95% volume contours of 139 

simulated UDs as we increased the number of paths simulated and found that these areas 140 

remained relatively stable above ~750,000 paths (Figure S7). We also found that the relative 141 

percent change in pixel values of UDs approached zero as the simulation duration increased 142 

(e.g., 10 days to 68 days for spring; Figure S8). Across seasons, an average of 3.3% (range = 143 

2.1% to 4.0%) of the proposed steps for each model were not realized because simulated 144 

movement paths reached the study area boundary. Simulated paths had very similar step length 145 

distributions as real paths, but less directional persistence (Figures S9 and S10), and visual 146 

inspection of a random sample of simulated versus real GPS paths showed similar areas of use 147 

and avoidance (Figure S11). Simulating movements on a future landscape surrounding BC’s Elk 148 

Valley with human disturbance footprints resulted in correspondingly larger areas that were 149 

avoided by bears, while the UD for a past human disturbance-free landscape highlighted the 150 

degree to which roads and highways impeded movements throughout the area (Figure 5).  151 



 152 

Figure 6. Predicted percent change in connectivity for grizzly bears from past to current 153 
conditions (left panel), and current conditions to a future scenario with additional coal mines and 154 
expanded town footprints (right panel) in the Elk Valley, British Columbia. Nodes were sampled 155 
from the top 30% of pixel values in all three of the past, current, and future annual utilization 156 
distributions. Relative connectivity was defined as the relative number of simulated trajectories 157 
that successfully transversed a pair of nodes in the start period for each panel. Relative node use 158 
was defined as the relative number of successful simulated trajectories whose locations fell 159 
within the intersection of a 1-km radius around the node and the habitat patch containing that 160 
node at the start period for each panel. Percent change was estimated by counting the number of 161 
simulated trajectories that successfully transversed a pair of nodes in the start (nstart) and end 162 
(nend) periods, and calculating (1 - nend / nstart) × 100.  We calculated the 1% and 99% 163 
quantiles of percent change and set all pixel values lower, and higher, respectively, to these 164 
values, to ease visual interpretation. 165 
 166 

Predicted changes in functional connectivity 167 

Predicted movement success within and between habitat patches declined throughout much of 168 

the Elk Valley, BC area from a past scenario free of human disturbance to current conditions 169 

(Figure 6). Eighty-four percent of edges connecting nodes showed declines in predicted 170 

connectivity, with a median (± SD) difference of –16.3% ± 15.9%, including declines for all 171 

connections that spanned highways. Predicted movement success declined for 67% of edges 172 

from current conditions to a future scenario with larger town footprints and proposed coal mines, 173 



although the magnitude of losses (median difference = –3.6% ± 9.3%) were generally lower than 174 

the past to current changes. The largest predicted declines from current conditions to the future 175 

scenario occurred in the northern end of the valley near the town of Elkford. We predicted slight 176 

increases in functional connectivity to some habitat patches to the east and southeast under the 177 

future scenario, likely reflecting simulated bears that circumvented the entire area containing 178 

additional disturbance footprints. 179 

 180 

Validation of iSSFs 181 

The mean Spearman’s rank correlation across individuals using the binned seasonal UDs for 182 

each of the six validation regions ranged from 0.75 to 0.86 in spring, 0.68 to 0.90 in summer, and 183 

0.65 to 0.83 in fall (Figure S12). Model predictive capacity was consistently high across 184 

individuals for all three seasons in both Banff regions (east and west) and lower in the Southeast. 185 

For each region, UHC plots depicted the degree to which models fit using training data from all 186 

other regions predicted used habitats accurately (Figures S13, S14, S15, S16). In spring, the 187 

model generally predicted canopy cover distributions for used locations well across all regions 188 

except the Southeast (Figure S13). The spring model struggled to predict used distributions of 189 

terrain ruggedness in Elk Valley North and South. In both summer and fall, there were 190 

mismatches in the predicted versus observed distributions for used locations for canopy cover in 191 

Banff National Park East, Elk Valley South, and Kananaskis. The fall model failed to accurately 192 

predict the used distribution for terrain ruggedness in Elk Valley South (Figure S15). The 193 

external validation of seasonal UDs using GPS locations from the Flathead Valley, BC showed 194 

better predictive performance in the spring (Sr = 0.82) and summer (Sr = 0.84) than in the fall 195 

(Sr = 0.52; Figure S17). 196 



 197 

Discussion 198 

We simulated individual animal movements from fitted iSSFs to predict habitat selection 199 

and functional connectivity for grizzly bears across a large swath of the southern Canadian 200 

Rocky Mountains and adjacent areas under three scenarios of human disturbance. Comparing 201 

movement success from simulations across these scenarios highlighted declining functional 202 

connectivity in an important movement corridor with high bear densities and frequent human-203 

bear conflicts. Our mixed-effects iSSFs allowed us to simultaneously estimate population-level 204 

movement and habitat selection responses while explicitly accounting for individual-level 205 

variation in these responses (Avgar et al. 2016, Muff et al. 2019). By simulating individual 206 

movements directly from fitted iSSFs, we predicted grizzly bear space use and connectivity that 207 

resulted from a realistic movement process.  208 

We observed considerable variation in behavioral responses to varying conditions 209 

throughout our study area. For example, generalized functional responses showed that bears 210 

avoided areas near highways and roads when they had an abundance of productive vegetation 211 

within their home range, but bears whose home ranges had lower vegetation productivity 212 

strongly selected areas closer to highways and roads. The increased selection for roadsides in 213 

low productivity areas was typified by the highly-protected Alberta park bears (those in the 214 

BNPW, BNPE and KAN validation regions), where roadsides provided attractive foods such as 215 

buffaloberry (Shepherdia canadensis), especially relative to the dry pine stands along with 216 

expanses of rock and ice that largely composed these landscapes. Outside of protected areas, 217 

increased use of roadsides by bears struggling to meet nutritional demands could represent an 218 

ecological trap (Nielsen et al. 2004, Lamb et al. 2017). These results suggest conservation 219 
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actions such as highway crossing structures that augment habitat may be most effective at 220 

reducing grizzly bear mortality risk in areas with generally low broad-scale vegetation 221 

productivity. If grizzly bear movements and behaviors within home ranges reflect those during 222 

longer-distance movements, these targeted actions could also increase broader scale connectivity 223 

across the region.  224 

Bears consistently avoided crossing highways in all seasons and regions, including 225 

regions such as Banff National Park West and Kananaskis where they selected areas near roads. 226 

Comparisons of predicted space use and movement success from past to current conditions 227 

highlighted the degree to which highways have heavily impeded grizzly bear movements. Bears 228 

also strongly avoided moving across high-elevation rocky terrain, glaciers, and towns in all 229 

seasons. A portion of semi-permeable barrier crossings in our dataset were likely false positives 230 

due our relocation interval of 6 hours and the highly mobile nature of grizzly bears. Therefore, 231 

we may have underestimated their avoidance of crossing these features. Semi-permeable barriers 232 

collectively constrained grizzly bear movements to relatively narrow corridors in some areas, 233 

such as the Elk and Bow River valleys. Avoidance of towns and mines was partially captured by 234 

the positive greenness coefficients, which likely explains the lack of statistical significance for 235 

the mine coefficients in spring and fall. Bears used lower elevation areas in the spring and fall 236 

compared to the summer months (Figure S2), likely in response to a combination of snowpack 237 

and forage availability (McLellan and Hovey 2001a). Some valley bottoms are particularly 238 

attractive to bears in the fall, due to an abundance of carcasses and fruit trees (Lamb et al. 2017, 239 

2023).  240 

Any predictions of animal space use across a large area, and those in areas beyond the 241 

spatial extent of model input data, should always be interpreted with caution (Beyer et al. 2010), 242 
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perhaps especially for a highly-mobile omnivore. Grizzly bears in this region are known to 243 

exhibit considerable dietary plasticity to help meet their high energetic requirements (Roberts et 244 

al. 2014), sometimes relying on locally-abundant foods, such as fish (Mowat et al. 2013) or 245 

whitebark pine (Pinus albicaulis) seeds (Hamer 2021), that are not captured by remotely-sensed 246 

GIS layers such as those used in our models. Therefore, our predictions may underestimate the 247 

relative importance of certain areas for grizzly bear habitat use. Further, our results may be 248 

biased towards bears that frequently use valley bottoms, as most capture efforts were focused in 249 

these areas.  250 

Our simulated UDs largely represented within-home-range movements necessary to carry 251 

out daily requirements (Riordan-Short et al. 2023) rather than long-distance dispersal, which is 252 

rarely captured in animal movement data. However, given that grizzly bear dispersal in our study 253 

area primarily occurs in gradual range shifts or expansions over a period of months to years 254 

(McLellan and Hovey 2001b, Proctor et al. 2004), some areas of high predicted use in our UDs 255 

may overlap with dispersal corridors. Our simulations did not incorporate mortality risk, which 256 

would be higher in areas near highways, human settlements, and agricultural areas (Northrup et 257 

al. 2012, Lamb et al. 2023). Further, we did not explicitly account for extrinsic factors such as 258 

competition or conspecific population density, which can influence movement and habitat 259 

selection (Smith et al. 2023). Despite these potential limitations, our UDs generally performed 260 

well in rigorous spatial cross-validation and external validation (Figures S13-S17), and the 261 

should be valuable for informing large-scale conservation planning. 262 

We focused our assessment of changing space use and functional connectivity on BC’s 263 

Elk Valley and the adjacent eastern slopes of the Rocky Mountains, which collectively form an 264 

area of existing and proposed mining of rich metallurgical coal deposits, along with dispersed 265 
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human settlements that also rely on agriculture, forestry, and tourism. The area is situated where 266 

the Rocky Mountains narrow to less than 70 km, and may serve as an important north-south 267 

corridor facilitating broad-scale genetic connectivity (Palm et al. 2023). Future simulations 268 

suggest that the combined effects of new coal mines and expanded settlements will lead to 269 

further declines in local functional connectivity along the length of the Elk Valley but may 270 

increase connectivity towards the east into presumably lower-quality habitat. Given the 271 

magnitude of existing connectivity declines predicted by our simulations, even modest 272 

connectivity losses in this area could eventually limit the movements of bears from adjacent 273 

undisturbed areas that currently help avert local extirpations (Lamb et al. 2020).  274 

Existing grizzly bear connectivity in the southern Canadian Rocky Mountains 275 

demographically supports populations that would rapidly decline without it. Areas where bears 276 

and extensive human development (towns, transportation corridors, and agriculture) overlap can 277 

act as sink habitats where bears are not able to reproduce fast enough to offset high mortality. 278 

Currently, connectivity in this region allows for population persistence in these areas through 279 

both within-home-range movement and immigration from adjacent areas (Lamb et al. 2020). 280 

This source-sink dynamic and demographic rescue has been observed widely across our study 281 

area (Nielsen et al. 2004, Northrup et al. 2012b, Braid and Nielsen 2015, Lamb et al. 2020). If 282 

future human-caused habitat alteration impedes functional connectivity to the point that 283 

dispersing animals can no longer offset in situ demographic losses, grizzly bear populations in 284 

these sink areas will decline.  285 

Grizzly bears are a wide-ranging keystone species (Tardiff and Stanford 1998), and 286 

mitigating human disturbances that impede their movements should also improve connectivity 287 

for other wildlife species. Conservation groups and resource companies targeting land purchases 288 
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can use our spatial predictions to optimize parcel selection, protect existing movement corridors, 289 

and avoid degradation of areas where future connectivity is predicted to increase. At a minimum, 290 

restoring degraded land or increasing landscape permeability using a combination of highway 291 

crossing structures and fencing could help reduce potential negative effects of future 292 

development on wildlife connectivity in the region (Clevenger and Ford 2010, Sawaya et al. 293 

2014).  294 

 295 
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 478 
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 481 

 482 

 483 

Appendix 1 484 

Creation of habitat covariate layers 485 

Topography, greenness and canopy cover 486 

We calculated the terrain ruggedness index (TRI) using elevation data from NASA’s 487 

Shuttle Radar Topography Mission (Farr et al. 2007) using the mean elevation difference 488 

between each pixel and its eight neighboring pixels (Wilson et al. 2007).  We used semi-decadal 489 

canopy cover data from NASA’s Global 30-m Landsat Tree Canopy Version 4. For vegetation 490 

greenness, we used Landsat 8 enhanced vegetation index (EVI) data to create a static layer that 491 

represented the average EVI for years 2013–2016, and created annual layers for each year in the 492 

GPS collar dataset (2000–2020). High (30-m) resolution Landsat 8 EVI was only available 493 

2013–2020, so we backcasted EVI to 2000. We associated both EVI metrics with time since 494 

disturbance (logging, mine, or fire) using the 2013–2022 data, and backcasted disturbances for 495 
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the 2000–2012 period using average time since disturbance relationships for each feature. We 496 

assigned the average EVI and delta EVI values for undisturbed areas prior to disturbance during 497 

the backcasting. 498 

 499 

Annual mines layers 500 

We hand digitized mines using 30-m resolution annual Landsat 7 imagery. Road and 501 

highway data was compiled using federal and provincial repositories (Government of Canada 502 

2016, Alberta Biodiversity Monitoring Institute 2019, Government of British Columbia 2021).  503 

 504 

Semi-permeable barrier variables 505 

We defined the boundaries of towns using building densities calculated from Microsoft’s 506 

building footprint layer (https://www.microsoft.com/en-us/maps/building-footprints) using the 507 

“kernel density” tool in ArcMap with a search radius of 500 m; we classified densities above 100 508 

buildings/km2 as 1 and all others as 0.  We created the alpine rock/ice barrier layer using the 509 

“barren” and “snow and ice” categories from the 30-m resolution North American Land Cover 510 

Change Monitoring System’s 2015 land cover layer and only included areas >2000 m in 511 

elevation.  512 

 513 

Distance-to transformations for roads and highways 514 

 To create distance-to variables for roads and highways, we calculated selection ratios 515 

(Manly et al. 2002) for each season across a range of distances to roads to determine the distance 516 

beyond which grizzly bear responses to roads changed from avoidance to selection (or vice 517 

versa). We then estimated the decay rate α in the exponential decay equation 1−exp(−αd), where 518 
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d is the distance to roads, where the decay curve asymptotes at this distance (Nielsen et al. 2009), 519 

and used that equation to transform distances to roads in our models. Transformed distance 520 

values ranged from 0 at the road to near 1 at the asymptote, so a positive selection coefficient 521 

would indicate selection for greater distances from roads. 522 

 523 

Creating past (human disturbance-free) layers for greenness and canopy cover 524 

To create past layers, we filled greenness and canopy cover values within existing disturbance 525 

footprints using moving windows of 5 pixels for highways and roads, and 15 pixels for mines 526 

and towns). We then calculated a past broad-scale greenness layer using the past greenness layer.  527 

 528 

Additional details on integrated step selection functions 529 

Model selection 530 

We did not include a quadratic term for greenness, as we predicted that bears would select for 531 

high greenness across all seasons. For canopy cover (first-order) and greenness, we included 532 

interactions with either broad-scale greenness (i.e., a generalized functional response) or 533 

elevation, as the two were highly correlated, and used Spearman’s rank correlations in the spatial 534 

cross validation procedure to determine which interactions performed best in the model. We used 535 

log likelihood to determine whether top models would include footprint or semi-permeable 536 

barrier variables for towns and mines. We also used log likelihood to determine whether to use 537 

static or annual EVI values, and whether to use EVI or delta EVI. 538 

 539 

Second-order (broad-scale) resource selection function for determining simulation start 540 

locations 541 
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To estimate home ranges for the broad-scale resource selection function (RSF), we first filtered 542 

out bear-years with less than three months of data. We then used net squared displacement 543 

curves to identify bears that engaged in dispersal movements or exploratory movements and 544 

omitted these bears from the data set. We subsampled the GPS data for each bear to one point 545 

every 24 hours to reduce the effect of spatial autocorrelation in the resulting model. We then 546 

omitted bears with less than 40 GPS locations, which resulted in 109 individuals for the analysis. 547 

We randomly sampled 10% of these individuals to use as a hold-out testing data set to assess the 548 

predictive power of our models. This resulted in 98 individuals for the final training data and 11 549 

individuals for the testing data. 550 

For each bear, we estimated a home range polygon with 90% kernel density utilization 551 

distributions using the ‘adehabitatHR’ package and the reference bandwidth. We created a buffer 552 

area around the spatial union of all individual bear locations to fully capture broad-scale 553 

availability of resources in the study area. To do this, we sampled ‘used’ points for each bear 554 

randomly within the home range polygons. The number of points sampled was the same number 555 

of points that went into estimating the home range polygon for each bear. We then calculated the 556 

maximum distance among GPS points for each bear and used the 90th percentile of the 557 

population level distribution of distances to create a buffer around the bear home ranges. We 558 

sampled available points across this area in a 1:1 ratio with the used points. We ran RSFs using a 559 

generalized linear model using the ‘glm’ function in R. 560 

Studies have shown that bears respond to environmental characteristics and resources at 561 

different spatial scales (Apps et al. 2004, Ciarniello et al. 2007). Therefore, we developed multi-562 

scale models using different neighborhood averages of variables (1000-m, 2500-m, and 5000-m) 563 

so as not to confound selection across the different levels. We took the mean of each variable 564 
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within each uniform buffer around each used and available point. We developed multi-scale 565 

logistic regressions with Generalized Linear Models and the ‘glm’ function in R. We first ran a 566 

single model for each variable at each scale and identified the scale with the highest log 567 

likelihood. These were carried forward into the multiple regression models to create a multi-scale 568 

model where each variable was included at its characteristic scale. 569 

Variables in the 2nd order RSF included building density, roads, highways, mine 570 

footprints, canopy cover, enhanced vegetation index (EVI), forest age, heat load (i.e., potential 571 

annual direct incident solar radiation centered around the southwest aspect; McCune and Keon 572 

2002), summer precipitation, elevation, terrain ruggedness index (TRI), topographic position 573 

index (TPI), northness, along with barren, crop, grass and shrub land cover classes (as dummy 574 

coded binary variables). We included all variables at the 5000-m scale except for grass, which 575 

we included at the 1000-m scale. We found statistically significant avoidance of high building 576 

densities, crop lands and high TPI (ridgetops). Bears strongly selected for higher elevation areas 577 

with higher values of EVI, summer precipitation, and heat load (generally southwest facing 578 

slopes) at this broad scale.  579 

 580 
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Supplementary tables 581 
 582 
Table S1. Summary of habitat covariate data, including model variables, data types, availability, temporal and spatial resolution for 583 
covariates included in integrated step selection functions for 109 grizzly bears marked between 2000 and 2020 in Canada’s Southern 584 
Rocky Mountains.  585 

Model term(s) Variable 
type 

Original  
data 
type 

Original 
source Data availability Temporal Native 

resolution Details 

evi_start; evi_end Continuous Raster Landsat 7/8 https://developers.google.com/earth-
engine/datasets/catalog/LANDSAT_LC08_C01_T1_8DAY_EVI 

Static or 
annual 

30m Values 
averaged 

between June 
15 - Sep 1 
each year 

evi_broad_end Continuous Raster Landsat 7/8 https://developers.google.com/earth-
engine/datasets/catalog/LANDSAT_LC08_C01_T1_8DAY_EVI 

Static 30m Broad-scale 
greenness; 
315-km2 

circular focal 
mean 

cc_start; cc_end Continuous Raster NASA https://developers.google.com/earth-
engine/datasets/catalog/NASA_MEASURES_GFCC_TC_v3 

Static 30m  

tri_start; tri_end Continuous Raster NASA 
SRTM 

https://developers.google.com/earth-
engine/datasets/catalog/USGS_SRTMGL1_003 

Static 30m TRI formula 
from Wilson 
et al. 2007 elev_end Continuous Raster NASA 

SRTM 
https://developers.google.com/earth-

engine/datasets/catalog/USGS_SRTMGL1_003 
Static 30m  

d_hwy_450m_end Continuous Raster BC/AB 
governments https://www2.gov.bc.ca/gov/content/data/geographic-data-

services/topographic-data/roads https://abmi.ca/home/data-
analytics/da-top/da-product-overview/Human-Footprint-

Products/HF-inventory.html 

Static   

d_road_450m_end Continuous Raster BC/AB 
governments 

Static   

barrier_hwy_end Binary 
semi-

permeable 
barrier 

Polyline BC/AB 
governments 

Static   

barrier_town_end Binary 
semi-

permeable 
barrier 

Polygon Microsoft 
building 

footprints 

https://github.com/microsoft/CanadianBuildingFootprints Static  Building 
density > 100 
buildings/km2 
and > 1 km2 

area 

town_end Binary 
footprint 

Raster Microsoft 
building 

footprints 

https://github.com/microsoft/CanadianBuildingFootprints Static  Building 
density > 100 
buildings/km2 
and > 1 km2 

area 

barrier_water_end Binary 
semi-

permeable 
barrier 

Raster CEC land 
cover 

http://www.cec.org/north-american-environmental-atlas/land-
cover-2010-landsat-30m/ 

Static 30m Lakes and 
reservoirs > 

100 ha barrier_rock_ice_end Binary 
semi-

permeable 
barrier 

Raster CEC land 
cover 

http://www.cec.org/north-american-environmental-atlas/land-
cover-2010-landsat-30m/ 

Static 30m Rock and ice 
patches > 
1500 m 

elevation and 
> km2 area 

mine_end Binary 
footprint 

Raster Landsat 7 https://developers.google.com/earth-
engine/datasets/catalog/LANDSAT_LE07_C02_T1_L2 

Annual 30m Hand 
digitized from 

annual 
Landsat 7 
imagery 

https://developers.google.com/earth-engine/datasets/catalog/LANDSAT_LC08_C01_T1_8DAY_EVI
https://developers.google.com/earth-engine/datasets/catalog/LANDSAT_LC08_C01_T1_8DAY_EVI
https://developers.google.com/earth-engine/datasets/catalog/LANDSAT_LC08_C01_T1_8DAY_EVI
https://developers.google.com/earth-engine/datasets/catalog/LANDSAT_LC08_C01_T1_8DAY_EVI
https://developers.google.com/earth-engine/datasets/catalog/NASA_MEASURES_GFCC_TC_v3
https://developers.google.com/earth-engine/datasets/catalog/NASA_MEASURES_GFCC_TC_v3
https://developers.google.com/earth-engine/datasets/catalog/USGS_SRTMGL1_003
https://developers.google.com/earth-engine/datasets/catalog/USGS_SRTMGL1_003
https://developers.google.com/earth-engine/datasets/catalog/USGS_SRTMGL1_003
https://developers.google.com/earth-engine/datasets/catalog/USGS_SRTMGL1_003
https://www2.gov.bc.ca/gov/content/data/geographic-data-services/topographic-data/roads
https://www2.gov.bc.ca/gov/content/data/geographic-data-services/topographic-data/roads
https://abmi.ca/home/data-analytics/da-top/da-product-overview/Human-Footprint-Products/HF-inventory.html
https://abmi.ca/home/data-analytics/da-top/da-product-overview/Human-Footprint-Products/HF-inventory.html
https://abmi.ca/home/data-analytics/da-top/da-product-overview/Human-Footprint-Products/HF-inventory.html
https://abmi.ca/home/data-analytics/da-top/da-product-overview/Human-Footprint-Products/HF-inventory.html
https://github.com/microsoft/CanadianBuildingFootprints
https://github.com/microsoft/CanadianBuildingFootprints
http://www.cec.org/north-american-environmental-atlas/land-cover-2010-landsat-30m/
http://www.cec.org/north-american-environmental-atlas/land-cover-2010-landsat-30m/
http://www.cec.org/north-american-environmental-atlas/land-cover-2010-landsat-30m/
http://www.cec.org/north-american-environmental-atlas/land-cover-2010-landsat-30m/
https://developers.google.com/earth-engine/datasets/catalog/LANDSAT_LE07_C02_T1_L2
https://developers.google.com/earth-engine/datasets/catalog/LANDSAT_LE07_C02_T1_L2


Table S2. Model formulas for final seasonal integrated step selection functions for 109 grizzly bears marked between 2000 and 2020 586 
in Canada’s Southern Rocky Mountains. 587 
   Final model terms  

  Spring Summer Fall 

Topograph
y and 

vegetation 
 

evi_end + canopy_cover_end + 
canopy_cover_end2 + tri_end + 

tri_end2 + northness_end + 
evi_end:canopy_cover_end + 

elev_end + elev_end2 + 
canopy_cover_end:elev_end + 

evi_end:elev_end + 

evi_end + canopy_cover_end + 
canopy_cover_end2 + tri_end + 

tri_end2 + northness_end + 
evi_end:canopy_cover_end + 

elev_end + elev_end2 + 
canopy_cover_end:elev_end + 

evi_end:elev_end + 

evi_end + canopy_cover_end + 
canopy_cover_end2 + tri_end + 

tri_end2 + northness_end + 
evi_end:canopy_cover_end + 

Human 
disturbance
s and semi-
permeable 

barriers 

 
d_hwy_end + d_road_end + 

hwy_cross + mine_end + town_cross 
+ water_cros s+ rock_ice_cross 

d_hwy_end + d_road_end + 
hwy_cross + mine_end + town_cross 

+ water_cross + rock_ice_cross 

hwy_cross + mine_end + 
town_cross + water_cross + 

rock_ice_cross 

Generalize
d 

functional 
responses 

 

d_hwy_end:evi_broad_end +  
d_road_end:evi_broad_end + 
hwy_cross:evi_broad_end + 

rock_ice_cross:evi_broad_end + 

canopy_cover_end:evi_broad_end + 
d_hwy_end:evi_broad_end + 
d_road_end:evi_broad_end + 
hwy_cross:evi_broad_end + 

 rock_ice_cross:evi_broad_end + 

evi_end:evi_broad_end + 
canopy_cover_end:evi_broad_end + 

hwy_cross:evi_broad_end + 
rock_ice_cross:evi_broad_end + 

Movement 
variables  

log_sl + cos_ta + log_sl:cos_ta + 
log_sl:cc_start + log_sl:tri_start + 

log_sl:evi_start + d_den_end 

log_sl + cos_ta + log_sl:cos_ta + 
log_sl:cc_start + log_sl:tri_start + 

log_sl:evi_start + d_den_end 

log_sl + cos_ta + log_sl:cos_ta + 
log_sl:cc_start + log_sl:tri_start + 

log_sl:evi_start + d_den_end 



 588 
 589 
 590 
 591 
 592 
 593 



Supplementary figures 594 

 595 

Figure S1. Selection ratios, shown by season and region, as a function of distance to (non-highway) roads for 109 grizzly bears 596 
marked between 2000–2020 in the southern Canadian Rocky Mountains. The size of points depicts the relative number of locations in 597 
that distance bin. Values above 1 indicate selection and values below 1 indicate avoidance. 598 
 599 
 600 



 601 
Figure S2. Selection ratios, shown by season and region, as a function of distance to highway for 109 grizzly bears marked between 602 
2000–2020 in the southern Canadian Rocky Mountains. The size of points depicts the relative number of locations in that distance bin. 603 
Values above 1 indicate selection and values below 1 indicate avoidance.604 



605 
Figure S3. Home range centroids for 109 grizzly bears with GPS collar data from 2000–2020 in 606 
the southern Canadian Rocky Mountains, shown by spatial validation region and sex. 607 
 608 
 609 



 610 

Figure S4. Predicted relative selection strength of grizzly bears, shown by season, across a range 611 
of values for three habitat covariates included in integrated step-selection functions (iSSF) fit to 612 
GPS collar data from 109 bears from 2000–2020 in the southern Canadian Rocky Mountains. 613 
Variable ranges on the x-axis include the middle 95% of values available to bears in each season, 614 
excluding values below and above the 2.5% and 97.5% quantiles, respectively. Selection strength 615 
for a covariate is relative to its average value (from the model input data) during that season. All 616 
other covariates in the model were held constant at their average values. Shaded regions indicate 617 
95% confidence intervals based on fixed effects only. Note the different y-axis for each season. 618 
 619 

 620 

 621 

 622 

 623 

 624 

 625 

 626 

 627 



 628 

Figure S5. Selection coefficients for all model terms included in integrated step-selection 629 
functions fit to GPS collar data from 109 grizzly bears from 2000–2020 in the southern Canadian 630 
Rocky Mountains. Transparent points show individual-level responses (random slopes; if 631 
applicable), while points with black outlines and error bars intervals depict fixed-effects 632 
coefficients and associated 95% confidence intervals. 633 
 634 



 635 

Figure S6. Predicted distributions of net displacement per hour as a function of canopy cover 636 
(top panels) and terrain ruggedness (bottom panels) across three seasons from integrated step-637 
selection functions fit to GPS collar data from 109 grizzly bears from 2000–2020 in the southern 638 
Canadian Rocky Mountains. 639 
 640 

 641 

 642 

 643 

 644 



 645 
Figure S7. Area of utilization distribution isopleths as a function of the number of animals (paths) in simulations from integrated step 646 
selection functions fit to 109 grizzly bears from 2000–2020 in the southern Canadian Rocky Mountains.  647 



 648 
Figure S8. Maps showing the relative percent change in the spring season utilization distribution, simulated from an integrated step 649 
selection function fit to 109 grizzly bears in the Southern Canadian Rocky Mountains from 2000–2020, as a function of simulation 650 
length. Values are relative to the maximum pixel change across all 10-day periods, excluding the bottom 0.5% and top 0.5% of values 651 
to aid visualization. Note the last period is 8 days instead of 10.652 



 653 

Figure S9. Step length distribution for real steps from 109 grizzly bears in the southern Canadian 654 
Rocky Mountains versus those for simulated steps from seasonal integrated step selection 655 
functions. The time interval between successive steps was 4.5 to 6 hours for real steps and 6 656 
hours for simulated steps. 657 
 658 

 659 

Figure S10. Turn angle distribution for real steps from 109 grizzly bears in southern Canadian 660 
Rocky Mountains versus those for simulated steps from seasonal integrated step selection 661 
functions. The time interval between successive steps was 4.5 to 6 hours for real steps and 6 662 
hours for simulated steps. 663 



 664 

Figure S11. Observed (real) grizzly bear movements from GPS collar data for specific areas and 665 
seasons in the southern Canadian Rocky Mountains compared to simulated movements under 666 
current conditions from fitted integrated step-selection functions. GPS collar data was not 667 
randomly distributed with respect to bear density across the landscape due to capture methods 668 
and access; therefore some areas not used by collared bears that were predicted as used in 669 
simulations likely represent areas where bears were present but were not sampled via collaring 670 
efforts.  671 
 672 

 673 

 674 

 675 



 676 
Figure S12. Spatial cross validation for six regions showing the area-adjusted average proportions of used locations that fell into each 677 
of the 10 (nearly equal-area) bins of utilization distributions, where each individual line is a separate bear and validation results are 678 
depicted by season and region. Utilization distributions were created from individual-based simulations of integrated step-selection 679 
functions fit to GPS collar data from 109 bears from 2000–2020 in the southern Canadian Rocky Mountains. Models were fit to 680 
training data that excluded the focal region and predictions were made to that withheld region. Bolded points and error bars indicate 681 
mean values ± 1 standard deviation across all individuals for each map bin. Text annotation displays the mean ± 1 standard deviation 682 
of Spearman’s rank correlations across all individuals in that season-region. 683 



 684 

Figure S13. Used-habitat calibration plots for the spring season integrated step-selection function fit to GPS collar data from 95 685 
grizzly bears from 2000–2020 in the southern Canadian Rocky Mountains. Panels depict the distribution of available and used 686 
locations for continuous variables in the test data sets (withheld region), along with 95% simulation envelopes for the predicted 687 
distribution of these habitat covariates at the used locations from the step-selection functions fitted to the training data sets (the 688 
remaining five regions). Models are well calibrated if the used location distributions fall within the simulation envelopes. 689 
 690 



691 
Figure S14. Used-habitat calibration plots for the summer season integrated step-selection function fit to GPS collar data from 79 692 
grizzly bears from 2000–2020 in the southern Canadian Rocky Mountains. Panels depict the distribution of available and used 693 
locations for continuous variables in the test data sets (withheld region), along with 95% simulation envelopes for the predicted 694 
distribution of these habitat covariates at the used locations from the step-selection functions fitted to the training data sets (the 695 



remaining five regions). Models are well calibrated if the used location distributions fall within the simulation envelopes.696 

 697 
Figure S15. Used-habitat calibration plots for the fall season integrated step-selection function fit to GPS collar data from 109 grizzly 698 
bears from 2000–2020 in the southern Canadian Rocky Mountains. Panels depict the distribution of available and used locations for 699 
continuous variables in the test data sets (withheld region), along with 95% simulation envelopes (model predictions) for the predicted 700 
distribution of these habitat covariates at the used locations from the step-selection functions fitted to the training data sets (the 701 
remaining five regions). Models are well calibrated if the used location distributions fall within the simulation envelopes. 702 



 703 

Figure S16. Used-habitat calibration plots for integrated step-selection functions fit to GPS collar data from 109 grizzly bears from 704 
2000–2020 in the southern Canadian Rocky Mountains. Panels depict the distribution of available and used locations for binary 705 
variables in the test data sets (withheld region), along with 95% simulation envelopes (model predictions) for the predicted 706 
distribution of these habitat covariates at the used locations from the step-selection functions fitted to the training data sets (the 707 
remaining five regions). Models are well calibrated if the used location distributions fall within the simulation envelope. 708 



 



Figure S17. External validation of seasonal utilization distributions using GPS location data 
from 17 grizzly bears in the Flathead Valley, BC, showing the area-adjusted average proportions 
of used locations that fell into each of the 10 (nearly equal-area) bins of utilization distributions. 
Each individual line is a separate bear. Utilization distributions were created from individual-
based simulations of integrated step-selection functions fit to GPS collar data from 109 bears 
from 2000–2020 in the southern Canadian Rocky Mountains. Bolded points and error bars 
indicate mean values ± 1 standard deviation across all individuals for each map bin. Text 
annotation displays the mean ± 1 standard deviation of Spearman’s rank correlations across all 
individuals in that season. 
 

 


